Shock metamorphism of ordinary chondrites from Grove Mountains, Antarctica

Feng Lu, Lin Yangting, Hu Sen, LiuTao

PDF(4664 KB)
Advances in Polar Science ›› 2009, Vol. 20 ›› Issue (2) : 187-199.

Shock metamorphism of ordinary chondrites from Grove Mountains, Antarctica

  • Feng Lu1, Lin Yangting2, Hu Sen3, LiuTao4,*
Author information +
History +

Abstract

Shock effects of 93 Grove Mountains (GRV) ordinary chondrites were studied in this work, including fracture, various types of extinction, and recrystallization of silicates observed under optical microscopy. Shock-induced veins and pockets show various microtextures, decomposition and phase transformation of minerals. The confirmed high-pressure polymorphs of silicates are ringwoodite, majorite, pyroxene glass and maskelynite. Based on the shock effects and assemblages of high-pressure minerals, shock stages of all of 93 GRV chondrites were classified. In comparison with literature, the Grove Mountains meteorites have a higher fraction (23 out of 93) of heavily shocked samples (S4-S5). Most of the heavily shocked meteorites are L group (22 out of 23), except for one Hchondrite. The distinct shock metamorphism between H and L groups may indicate different surface properties of their parent bodies. In addition, there is relationship between petrologic types and shock stages, with most heavily shocked samples observed in equilibrated ordinary chondrites (especially Type 5 and 6).

Key words

Antarctic / Grove Mountains / chondrites / shock metamorphism / high-pressure mineral

Cite this article

Download Citations
Feng Lu, Lin Yangting, Hu Sen, LiuTao. Shock metamorphism of ordinary chondrites from Grove Mountains, Antarctica. Advances in Polar Science. 2009, 20(2): 187-199

References

1 Dodd RT, Jarosewich E (1979): Incipient melting in and shock classification of L-group chondrites. Earth Planet Science Letter, 44: 335-340. DOI:10.1016/0012-821X(79)90181-X 2 Stöffler D, Keil K, Scott ERD(1991): Shock metamorphism of ordinary chondritis. Geochimicaet Cos-mochimica Acta, 55: 3845-3867. DOI:10.1016/0016-7037(91)90078-J 3 Chen M, Sharp TG, ElGoresy A et al. (1996): The majoritepyrope + magnesiowüstite assemblage: constraints on the history of shock veins in chondritis. Science, 271: 1570-1573. DOI:10.1126/science.271.5255.1570 4 Gillet P, Chen M, Dubrovinsky L et al. (2000): Natural NaAlSiO hollandite in the shocked Six iang kou meteorite. Science, 287: 1633-1636. 3 8 DOI:10.1126/science.287.5458.1633 5 Xie Z, Sharp TG, De Car li PS(2006): High-pressure phases in shock-induced melt veins of the Ten ham L6 chondrite: Constraints of shock pressure and duration. Geochemicaet Cosmochimica Acta, 70: 504-515. DOI:10.1016/j.gca.2005.09.003 6 Rubin AE, Scott ERD, Keil K (1997): Shock metamorphism of enstatite chondrites. Geochimicaet Cosmochimica Acta, 61(12): 847-858. 7 Xie X, Chen M, Wang D(2001): Shock-related mineralogical features and PT history of the Suizhou L5 chondrite. European Journal of Mineralogy, 13: 1177-1190. DOI:10.1127/0935-1221/2001/0013-1177 8 Katsura T, Yamada H, Nishikawa O et al. (2004): Olivine-wadsleyite transition in the system (Mg, Fe)SiO. Jounal of Geophysics Research, 109: B02209. 2 4 9 Inoue T, Irifune T, Higo Y et al. (2006): The phase boundary between wadsleyite and ringwoodite in MgSiO determined by in situ Xray diffraction. Phys Chem Minerals, 33: 106-114. 2 4 DOI:10.1007/s00269-005-0053-y 10 Mcmillan P, Akaogi M (1987): Ram an spectra of MgSiO (modified spinel) and MgSiO (spinel). American Mineralogist, 72: 361-364. 2 4 2 4 11 Malavergne VGF, Benzerara K, Martinez I(2001): Description of new shock-induced phases in the Shergotty, Zagami, Nakhla, and Chassigny meteorites. Meteoritics & Planetary Science, 36: 1297-1350. 12 Tomiokab N, Kmiura M (2003): The breakdown of diopside to Ca-rich majorite and glass in a shocked H chondrite. Earth and Planetary Science Letters, 208: 271-278. DOI:10.1016/S0012-821X(03)00049-9 13 Chen M, Xie X, ElGoresy A(2004): A shock-produced (Mg, Fe) SiO glass in the Suizhou meteorite. Meteoritics & Planetary Science, 39: 1797-1808. 3 14 Trukhin ACB(2005): Ram an and optical reflection spectra of germanate and silicate glasses. Journal of Non Crystalline Solids, 351: 3640-3643. DOI:10.1016/j.jnoncrysol.2005.09.017 15 Yagi A, Suzuki T, Akaogi M (1994): High pressure transitions in the system KAlSiO-NaAlSiO. Physics and Chemistry of Minerals, 21: 12-17. 3 8 3 8 16 Tutti F(2007): For mation of end member NaAlSiO holl and ite-type structure (lingunite) in diamond anvilcell. Physics of The Earth and Planetary Interiors, 161(3-4): 143-149. 3 8 DOI:10.1016/j.pepi.2007.02.004 17 Xie XD, Chen M, Wang DQ et al. (2006): Melting and vitrification of plagioclase under dynamic high pressures. A cta Petrologica Sinica, 022: 503-509. 18 Chen M, El Goresy A(2000): The nature of maskelynite in shocked meteorites: not a diaplectic glass but a glass from shock-induced dense melt at high pressure. Earth and Planetary Science Letters, 179: 485-502. 19 Agee CB, Li J, Shannon MC et al. (1995): Presure-tem perature phase diagram for the Allen demeteorite. Jounal of Geophysics Research, 100: 17725-17740. DOI:10.1029/95JB00049

Funding

the Knowledge Innovation Program of the Chinese Academ y of Sciences ( kzcx2-yw-110, KZCX2-YW-Q08).
PDF(4664 KB)

775

Accesses

0

Citation

Detail

Sections
Recommended

/